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Abstract

Atrial Fibrillation (AF) is the most common cardiac ar-
rhythmia, linked to increased risk of stroke, heart failure,
and mortality poses a serious health challenge. This work
proposes a noninvasive method to characterize Body Sur-
face Potential Maps (BSPMs) of varying complexity using
the Wavelet Scattering Transform (WST). The goal is to
distinguish between normal sinus rhythm, AF with fibro-
sis, and AF with multiple rotors through a classification
framework. The processing pipeline includes dimension-
ality reduction via PCA, robust time-frequency feature ex-
traction using WST, and classification with a Random For-
est model. The best results were achieved on dataset with
noise injection of 10 dB SNR, reaching 99.6% accuracy.
Misclassification analysis indicated that spectral overlap,
particularly in cases with interacting rotors, can hinder
class separation. These results support the potential of
WST-based BSPM analysis for noninvasive AF mechanism
characterization.

1. Introduction

Atrial fibrillation (AF) is the most prevalent sustained
arrhythmia worldwide, affecting more than 33 million peo-
ple and associated with significant morbidity and mortality,
representing a major health challenge [1,2]. Current treat-
ment strategies include antiarrhythmic drugs and catheter
ablation. Successful ablation depends on the precise iden-
tification of arrhythmic drivers, such as focal sources or
rotors, typically using electroanatomical mapping systems
[3]. However, these systems are invasive, time-consuming,
and limited by their non-global perspective, which hinders
the detection of complex and dynamic atrial activity [4].

Electrocardiographic Imaging (ECGI) is a noninva-
sive alternative that reconstructs epicardial potentials from
Body Surface Potential Maps (BSPMs) and anatomi-
cal models from computed tomography scans. BSPMs,
recorded from high-density electrode arrays, provide spa-
tially rich representations of cardiac activity [5]. Despite
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their potential to reflect intracavitary activity, BSPMs are
high-dimensional, noisy, and nonstationary. Standard sig-
nal processing techniques such as the Fourier Transform
or Short-Time Fourier Transform struggle to extract lo-
calized transient patterns relevant to AF [6]. In con-
trast, the Wavelet Scattering Transform (WST) provides
translation-invariant time-frequency features that are ro-
bust and informative [7].

Recent studies have applied Al to BSPMs for noninva-
sive arrhythmia characterization. Deep learning models,
including CNNs and hybrids, have achieved high accu-
racy in AF recurrence prediction and ECG inverse problem
solving using both simulated and clinical data [8, 9]. Clas-
sical approaches combining wavelet-based features with
machine learning also performed well [10], and recent
use of the WST in ECG rhythm classification has shown
promising results with neural networks [11, 12], highlight-
ing the value of wavelet features in AF analysis.

The aim of this study is to characterize BSPMs of vary-
ing electrophysiological complexity using the WST, facil-
itating the noninvasive differentiation of atrial activation
patterns, namely, normal sinus rhythm, AF with fibrosis,
and AF presenting multiple rotors, through a multiclass
classification framework. To achieve this, a processing
pipeline was developed combining dimensionality reduc-
tion using Principal Component Analysis (PCA), robust
time-frequency feature extraction via WST, and classifica-
tion using a Random Forest (RF) machine learning model.

This manuscript is structured as follows: Section 2
presents the methods, followed by the results in Section
3, and concluding remarks in Section 4.

2. Methods

2.1. Dataset

A dataset of simulated BSPMs, generated from realistic
atrial models by solving the forward problem of electrocar-
diography through computational simulations of EGM sig-
nals, as described in [13], was used. To solve the forward
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problem, ten different torso geometries were employed,
and BSPM models were generated by linearly combining
these torso structures with the EGM computational mod-
els. Each BSPM model contains 64-lead surface potentials
sampled at 500 Hz.

This dataset, containing data from 52 individuals, was
categorized into three classes based on the complexity of
atrial activation wavefronts: (Class 0) 13 models exhib-
ited Normal Sinus Rhythm, (Class 1) 8 corresponded to
AF characterized by fibrosis and rotors, and (Class 2) 31
displayed AF exhibiting multiple rotors (but no fibrosis).

To standardize the signal length in the dataset to 2000
samples, only models with at least this length were consid-
ered. Longer signals were truncated accordingly, except
those of exactly 4000 samples, which were split into two
equal segments, each covering at least two heartbeats.

2.2. Experimental Set-Up

From this baseline dataset, four variants datasets were
generated for comparative evaluation:

« Original with PCA: Raw BSP signals without added
noise. PCA was applied at each BSPs signal, across the
64 electrodes, to retain the most significant spatial compo-
nents. The number of components was selected based on
cumulative explained variance in the training set.

o Filtered 10 dB: Signals with added Gaussian white
noise (10 dB SNR) followed by a 40 Hz low-pass (LP)
filter applied. PCA was applied as in previous variant.

o Filtered 20 dB: Signals with added Gaussian white
noise (20 dB SNR) followed by a 40 Hz LP filter applied.
PCA was applied as in previous variants.

« Original (No PCA): Original signals processed without
applying PCA prior to feature extraction.

In each dataset, a WST using Morlet wavelets was applied
to extract first-order and second-order time-frequency co-
efficients, generating translation-invariant features robust
to deformations and noise.

These features were then used to train a RF classifier,
independently for each dataset. To ensure unbiased evalu-
ation, the data were split at the individual level, keeping all
versions of each individual EGM signal in the same parti-
tion, resulting in 560 training samples and 250 test sam-
ples.

2.3. Classification and Evaluation

A RF classifier was used for the classification task. RF
is a supervised ensemble method that combines multiple
decision trees, each trained on a random subset of the
data and features. Predictions are made by majority vot-
ing among the trees, improving generalization and reduc-
ing overfitting through bootstrapping and feature random-
ness [14, 15].

Hyperparameters used in the models were optimized via
randomized search with 5-fold cross-validation (50 itera-
tions) using accuracy as the metric. Tuning was performed
separately for each dataset, and the number of trees was
not included in the search, but it was fixed to 250.

2.4. Evaluation Metrics

Evaluation metrics were computed to assess classifica-
tion performance by comparing predicted versus ground
truth classes. The following metrics were used:

¢ Accuracy: Overall proportion of correct predictions.

« Sensitivity (Recall): Proportion of correctly identified
AF cases.

« Specificity: Proportion of correctly identified NSR
cases.

« Precision: Proportion of positive predictions that were
correct.

o Fl-score: Harmonic mean of precision and sensitivity.
e AUC-ROC: Area under the ROC curve, indicating the
model’s discrimination capacity.

o Log-loss: Penalizes incorrect predictions made with
high confidence.

3. Results

The RF classifier achieved strong performance across all
tested data subsets, successfully differentiating between si-
nus rhythm, AF with fibrosis, and AF with multiple rotors,
as detailed in Table 1. The highest accuracy (0.996) was

Metric Original | Filtered 10 dB | Filtered 20 dB | Original (No PCA)
Accuracy 0.960 0.996 0.968 0.960
F1 Score 0.963 0.996 0.970 0.963
Sensitivity 0.982 0.998 0.986 0.982
Specificity 0.889 0.984 0.905 0.889
AUC-ROC 0.975 0.999 0.999 0.981
Log Loss 0.148 0.098 0.076 0.133

Table 1: Performance metrics for the RF classifier across
different data subsets.

achieved with subset 10 dB SNR and LP filtered, suggest-
ing that moderate noise may act as a regularizer, improving
model generalization. The confusion matrix and the aver-
age and individual ROC curves for this model are shown
in Figure 2.

Applying PCA prior to WST did not yield a noticeable
improvement in performance, suggesting that WST is in-
herently robust to input dimensionality and capable of ex-
tracting discriminative features without prior dimensional-
ity reduction. Nevertheless, this step substantially reduced
the computational cost, making it a valuable preprocess-
ing option even when classification accuracy remains un-
changed.
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EGM Signal
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(a) EGMs recorded from atrial regions 1 (blue), 2 (yellow), and 7 (red).
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(b) Corresponding periodograms illustrating frequency components of
the EGMs shown above.

Figure 1: Representative EGM signals and their spectral
profiles in a misclassified AF case with multiple rotors.

To explore the classifier’s limitations, misclassified
BSPM signals, especially AF with Multiple Rotors pre-
dicted as AF with Fibrosis, were analyzed in time and fre-
quency domains. These errors likely stem from overlap-
ping spectral features and shared surface-level characteris-
tics. Further analysis at the EGM level revealed that rotor
regions showed regular activation with dominant frequen-
cies, while the collision zone of rotors exhibited irregular,
broadband activity as shown in Figure 1. This local dis-
ruption likely distorted the BSPM, introducing ambiguous
patterns that hindered correct classification. These find-
ings highlight the challenge posed by spatiotemporal com-

plexity in AF and suggest that rotor interactions should be
better addressed in future models.
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(a) Confusion matrix showing prediction accuracy across three classes:
normal sinus rhythm (Normal), AF with fibrotic activity (AFFibr), and
AF with multiple rotors (AFRot).
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(b) Receiver Operating Characteristic (ROC) curves for each class,
demonstrating the model’s discrimination capability.

Figure 2: Confusion matrix and ROC curves obtained for
the RF classifier for the 10 dB filtered dataset, the dataset
that delivers the best performing model for each class: AF
with more than two rotors (AFRot), AF with fibrotic activ-
ity (AFFibr), and normal sinus rhythm (Normal).

4. Conclusions

This work presents a methodology to characterize
BSPMs of varying electrophysiological complexity using
the WST. By combining PCA for dimensionality reduc-
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tion, WST for robust time-frequency feature extraction,
and RF classification, the system effectively distinguished
between sinus rhythm, AF with fibrosis, and AF with
multiple rotors. The best performance was achieved on
data with 10 dB SNR and LP filtering, reaching 99.6%
accuracy, demonstrating strong robustness to noise and
preprocessing variations. Misclassifications were mainly
linked to overlapping spectral features in rotor-interaction
regions. Overall, the results support WST as a power-
ful tool for noninvasive characterization of atrial activation
patterns.

Future work should explore real patient data, more com-
plex rhythm types, and integration of spatial information to
enhance clinical relevance and guide mechanism-targeted
therapies.
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